

QCD@LHC 2019

Measurement of the strong coupling constant by CMS

Juska Pekkanen on behalf of the CMS Collaboration juska@cern.ch

SUNY Buffalo

July 16, 2019

The strong coupling constant α_S

- Not a constant but running wildly
 - Leads to confinement and asymptotic freedom of QCD
- The only free parameter in QCD
 - Considering quark masses fixed
- Enters every QCD theory calculation

- Contributes *e.g.* to Higgs production σ calculation
 - \star Affects also BSM searches looking for deviations in Higgs $\sigma!$
- Precision measurement important but hard
- $\delta(\alpha_{EM}) = 0.2$ parts per billion, $\delta(\alpha_S) = 10^7$ ppb (~1%)
- Determined in lattice QCD or collider experiments
 - Best precision from lattice calculations, but reliability of uncertainty estimates under discussions

History of α_S measurements

- First known world average value from G. Altarelli in 1989
 - Heavily extrapolated to m_Z , but still within $1\sigma!$
- Lattice calculations and collider experiment results combined in world averages
 - Uncertainty estimation and choosing results not trivial
- ► Converging to $\alpha_s(m_Z) = 0.118$, but uncertainty grown

Measurements from CMS

- ► CMS has produced $\mathcal{O}(10)$ α_s extractions with 7–13 TeV
- Here I present four interesting and/or recent results
- Arbitrary choice, apologies if your favourite not included
- Following analyses made the cut this time:
 - α_s extraction from tt cross section @ 7 TeV
 - α_s extraction from jet substructure in $t\bar{t}$ events
 - α_s extraction from triple-differential dijet cross section
 - α_s extraction from tt cross section @ 13 TeV

α_s from tr production cross section

- Inclusive $\sigma_{t\bar{t}}$ from a previous CMS analysis is compared to NNLO QCD predictions
 - 2.3fb⁻¹ @ 7 TeV, arXiv:1208.2671
- $\sim \alpha_s(m_Z)$ determined by fixing m_t (and *vice versa*)
 - Favoured α_s from a PDF fit χ^2 scan
- Five different NNLO PDF sets tested
- First $\alpha_s(m_Z)$ result with NNLO at a hadron collider and the first α_s extraction using top-quark production

- Extracted α_s values mostly below the 2012 world average
 - ... but world average came down from that!
- With the latest world average results \sim within 1 σ
- ► Main result from NNPDF2.3: $\alpha_s(m_Z) = 0.1151^{+0.0028}_{-0.0027}$

α_s from triple-differential dijet cross section

- ▶ Triple differential $\sigma_{\rm dijet}$ measured from dijet events with 20fb⁻¹ of 8 TeV data
 - $\sigma_{\text{dijet}}(p_{\text{T}}^{\text{ave}}, \text{ rapidity separation } y^*, \text{ boost } y_b)$
- ▶ Dijet processes sensitive to α_s
- PDF fits done with the measeured $\sigma_{\rm dijet}$ and DIS data from HERA
 - $\alpha_s(m_Z)$ inferred by repeating PDF fit with it as a free parameter

- Measured triple-differential $\sigma_{\rm dijet}$ agree well with the NLOJET++ and NNPDF 3.0 prediction
 - Some deviation in the boosted region y_b > 1
- ► Extracted strong coupling: $\alpha_s(m_Z) = 0.1199^{+0.0034}_{-0.0025}$
 - Theory scale uncertainty dominating: +0.0031 -0.0020

α_s from jet substructure data in $t\bar{t}$ events

- ▶ Measurement of jet substructure in $t\bar{t} \rightarrow \ell^{\pm}$ + jets events
 - Using the full 2016 dataset; 36 fb⁻¹ at \sqrt{s} = 13 TeV
- Jet substructure sensitive to the strenght of QCD
 - · Here angle between subjets most sensitive
- $\alpha_s(m_Z)$ extracted at LO+LL theory accuracy
 - Measured distributions compared to POWHEG + PYTHIA8 predictions, 'preferred' $\alpha_{\rm S}$ determined in χ^2 scan

- Out of many jet substructure variables, the angle between groomed subjets ΔR_g gives the best α_s extraction result
- $ightharpoonup \alpha_s$ is determined from a FSR-process
- Result: $\alpha_s = 0.115^{+0.015}_{-0.013}$
 - Precision limited by FSR scale unc. in PYTHIA8, +0.014

α_s from $t\bar{t}$ production cross section (revisited)

- ▶ Inclusive $\sigma_{t\bar{t}}$ is measured from dileptonic $t\bar{t}$ events
 - Full 2016 dataset; 36 fb⁻¹ @ 13 TeV
- $\alpha_s(m_Z)$ determined by fixing m_t (and *vice versa*) and comparing obtained $\sigma_{t\bar{t}}$ to NNLO prediction
 - Preferred α_s value from a χ^2 scan
- Four different NNLO PDF sets tested

- Good agreement between all four NNLO PDF sets
- \blacktriangleright Extracted α_s values (again) below the world average
- ▶ Just to pick one, NNPDF3.1 gives $\alpha_s(m_Z) = 0.1140^{+0.0039}_{-0.0033}$

Summary

- CMS results well in line with the world average
- Uncertainties much larger than in combined values
 - Theory scale unc. dominate in $\sigma_{\textit{dijet}}$ & jet substructure
- ▶ Similar unc. with 2.3fb $^{-1}$ 7 TeV and 36fb $^{-1}$ 13 TeV in $\sigma_{t\bar{t}}$
 - Syst. limited, leading uncertainties from $\sigma_{t\bar{t}}$ and PDF

References & further reading

Links to the presented CMS results:

- 1. "Determination of the top-quark pole mass and strong coupling constant from the $t\bar{t}$ production cross section in pp collisions at \sqrt{s} = 7 TeV" arXiv:1307.1907
- 2. "Measurement of the triple-differential dijet cross section in proton-proton collisions at \sqrt{s} = 8 TeV and constraints on parton distribution functions" arXiv:1705.02628
- 3. "Measurement of jet substructure observables in $t\bar{t}$ events from proton-proton collisions at \sqrt{s} = 13TeV" arXiv:1808.07340v2
- 4. "Measurement of the tt production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at \sqrt{s} = 13 TeV" arXiv:1812.10505

Excellent review on α_S **measurements by G. Dissertori:**

"The Determination of the Strong Coupling Constant" 1506.05407

A contribution to: "The Standard Theory up to the Higgs discovery - 60 years of CERN", L. Maiani and G. Rolandi (editors)

